skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bao, Shan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. As of early 2023, only a limited number of Society of Automotive Engineers (SAE) Level 3 (L3) automated driving systems are available on the market, and they are primarily offered by luxury vehicle brands. SAE L3 automated driving systems are classified as conditional automation (CA), meaning that the vehicle can undertake some well-defined driving tasks under specific conditions, but the driver must be ready to assume control of the vehicle when prompted by the system. It is anticipated that an increasing number of L3 CA systems will be introduced on public roads in the next few years. However, L3 systems pose unique Human Factors (HF) challenges that require thoughtful consideration to ensure that production systems are feasible without compromising driver or road safety. This panel discussion brings together HF researchers and practitioners with expertise in human behavior and usability design for automotive applications to discuss and delineate key issues specifically related to L3 systems, as well as potential approaches to tackle these issues. 
    more » « less
  3. High-quality single-component white phosphors are instrumental in realizing high-efficiency devices. Rare earth fluorides and carbon quantum dots have great potential in the white light-emitting diode (WLED) field due to their unique advantages. Here, Rare-earth single atom based NaGdF4:Tb3+/Eu3+@C:N/Eu3+ single phosphor with tunable full-color luminescence was reported. The results of density functional theory (DFT) calculation and experimental characterization show that C atoms cannot be replaced by Eu3+, but C atoms are more favorable for anchoring Eu3+ single atoms. The DFT was employed to optimize the structures of the C:N/Eu3+ and NaGdF4:Tb3+/Eu3+, and calculate the work function, optical properties, and charge density difference. The obtained tunable full-color single phosphor can emit stable light from blue to red or even white. The constructed WLED devices also have stable and excellent color performance, that is, a color rendering index of up to 95 and a lower color temperature, and it has broad application possibilities in WLEDs. 
    more » « less